Kamis, 10 April 2008

Besi Tuang Cast Iron

Secara umum Besi Tuang (Cast Iron) adalah Besi yang mempunyai Carbon content 2.5% - 4%. Oleh karena itu Besi Tuang yang kandungan karbonnya 2.5% - 4% akan mempunyai sifat MAMPU LASNYA (WELDABILITY) rendah. Karbon dalam Besi Tuang dapat berupa sementit (Fe3C) atau biasa disebut dengan Karbon Bebas (grafit). Perlu di ketahui juga kandungan FOSFOR dan SULPHUR dari material ini sangat tinggi dibandingkan Baja.

Ada beberapa jenis Besi Tuang (Cast Iron) yaitu :

1. BESI TUANG PUTIH (WHITE CAST IRON).Dimana Besi Tuang ini seluruh karbonnya berupa Sementit sehingga mempunyai sifat sangat keras dan getas. Mikrostrukturnya terdiri dari Karbida yang menyebabkan berwarna Putih.
2. BESI TUANG MAMPU TEMPA (MALLEABLE CAST IRON).Besi Tuang jenis ini dibuat dari Besi Tuang Putih dengan melakukan heat treatment kembali yang tujuannya menguraikan seluruh gumpalan graphit (Fe3C) akan terurai menjadi matriks Ferrite, Pearlite dan Martensite. Mempunyai sifat yang mirip dengab Baja.
3. BESI TUANG KELABU (GREY CAST IRON).Jenis Besi Tuang ini sering dijumpai (sekitar 70% besi tuang berwarna abu-abu). Mempunyai graphite yang berbentuk FLAKE. Sifat dari Besi Tuang ini kekuatan tariknya tidak begitu tinggi dan keuletannya rendah sekali (Nil Ductility).
4. BESI TUANG NODULAR (NODULAR CAST IRON)NODULAR CAST IRON adalah perpaduan BESI TUANG KELABU. Ciri Besi tuang ini bentuk graphite FLAKE dimana ujung - ujung FLAKE berbentuk TAKIK-AN yang mempunyai pengaruh terhadap KETANGGUHAN, KEULETAN & KEKUATAN oleh karena untuk menjadi LEBIH BAIK, maka graphite tersebut berbentuk BOLA (SPHEROID) dengan menambahkan sedikit INOCULATING AGENT, seperti Magnesium atau calcium silicide. Karena Besi Tuang mempunyai KEULETAN yang TINGGI maka besi tuang ini di kategorikan DUCTILE CAST IRON.

FAKTOR-FAKTOR APA YANG MEMPENGARUHI SIFAT MAMPU LAS (WELDABILITY) PADA MATERIAL INI ???

1. Ketegangan saat pendinginan.Secara teori pengelasan (welding) material las (logam las / weld metal) akan berkontraksi selama pendinginan. Karena kerapuhan dari besi tuang inilah kontraksi cast iron mempunyai kemampuan yang lebih rendah dibandingkan Baja.
2. Bentuk yang tidak beraturan.Umumnya Besi Tuang ini dibuat dalam bentuk yang tidak berarturan atau boleh saya bilang artistik. Dengan adanya bentuk yang rumit besi tuang tersebut sedikit banyak mempunyai ketebalan yang tidak seragam hal ini akan mempengaruhi kontraksi tegangan yang terjadi pada material tersebut dan mudah terjadi retak dan perlu diingat juga yang melatarbelakangi ini adalah sifatnya yang mempunyai daya lentur yang sangat rendah.
3. HAZ yang keras.HAZ pada Besi Tuang yang berdekatan dengan Weld Metal akan mempunyai sifat yang KERAS. Pengerasan ini diakibatkan oleh adanya bagian HAZ yang tidak ikut mencair.
4. Pengikatan Karbon dari Base Metal.Akibat Pengelasan Besi tuang yang tercampur dengan Base Metal akan menyebabkan terjadinya pengikatan KARBON pada WELD METAL sehingga menyebabkan peningkatan kandungan SULFUR dan PHOSPOR dalam WELD METAL tersebut.
5. Penyerapan Minyak pada Besi Tuang.Karena bentuk kareketeristik material ini rata-rata berpori maka kemungkinan terjadinya peresapan minyak dalam graphite yang menyebabkan porositas pada logam las. Biasanya sering dialami oleh temen praktisi welding, repair pada saat maintenance.

Mengapa Cast Iron jika di Las Sering terjadi retak? Sebelum kita bahas hanya keretakan pada Cast Iron, ada baiknya jika kita mengerti terlebih dahulu apa yang disebut Crack pada logam, apa yang menyebabkan crack pada logam, apa pengaruh Chemical Composition terhadap mudah tidaknya suatu logam retak, Apa itu diagram CCT dan CCCT, dll. Sehingga kita tidak salah dalam mengambil kesimpulan dalam memahami terjadinya crack pada pengelasan Cast Iron…..

Keretakan pada proses pengelasan Cast Iron, ada beberapa faktor yang saling dukung mendukung sehingga memudahkan terjadinya Crack.

Faktor utamanya adalah :

1. Chemical Composition : %C = Carbon terlalu tinggi. Unsur C yang tinggi memang akan menurunkan Titik Lebur baja (Mesti dibahas juga Diagram Fe-Fe3C) sehingga antara proses peleburan dan penuangan di cetakan lebih mudah. Tetapi karena sifatnya yang lunak akan menjadi sumber keretakan di paduan Besi Cor, apalagi yang C nya berbentuk Flake (Besi cor mempunyai Carbon bebas, mungkin seperti radikal bebas di tubuh kita). %P= Posphor dan %S= Sulphur Tinggi. Dalam paduan Fe, kadar P dan S tidak boleh lebih besar dari keteentuan. Karena lebih dari itu akan menyebabkan sumber keretakan (kalau di proses rolling pembuatan besi beton bisa pecah) . Lantas mengapa unsur P dan S ini tidak diturunkan saja? Dalam proses pengecoran, unsur P dan S sangat diperlukan untuk meningkatkan mampu alir dari cairan besi….
2. Faktor-faktor lain seperti bentuk yang kompleks dan lain tidak banyak berpengaruh, karena kebanyakan pada proses pengelasan Cast Iron, keretakan terjadi pada daerah HAZ.
3. Bagaimana pengaruh Olie dll ? Pengotor seperti ini lebih banyak berpengaruh terhadap terjadinya Porosity pada weld metal.

Lantas bagaimana untuk menghindari terjadinya keretakan pada pada proses pengelasan Cast Iron?

1. Gunakan kawat las Nickel.
2. Kontrol heat input dan Cooling rate…
3. Sebelum mengelas harus dibersihkan terlebih dulu dari misalnya Olie, Cat dlll.

Pada umumnya Besi Tuang (Cast Iron) mempunyai bentuk yang rumit suatu contoh (PIPE FITTING, SPROKECT, PUMP, CRANK SHAFT MESIN MOBIL dan beberapa peralatan yang terdapat pada Pabrik GULA) bukan dalam bentuk MILD seperti STEEL yang sering kita temui dipasaran.

BAGAIMANA KORELASINYA.

Dengan adanya bentuk yang rumit besi tuang tersebut sedikit banyak mempunyai ketebalan yang tidak seragam hal ini akan mempengaruhi konstraksi tegangan yang terjadi pada material tersebut dan mudah terjadi retak.

Untuk menghindari timbulnya keretakan pada sebuah besi tuang karena ketegangan akibat konstraksi tegangan selama pengelasan sering dilakukan dengan memperluas bidang yang dipanasi dengan PREHEATING untuk menyeimbangkan KONTRAKSI TEGANGAN dalam hal ini ada metode yang dilakukan dalam preheating :

1. PREHEATING SETEMPAT.Tujuannya untuk menghambat tingkat pendinginan sambungan las.
2. PREHEATING KESELURUHAN.Mempunyai fungsi untuk melepaskan tegangan internal yang tersembunyi dan untuk memperlambat pendinginan pengelasan. Hal ini cocok untuk material yang mempunyai bentuk rumit Seperti RODA GIGI, SPROKET dsb.

MENGAPA KAWAT LAS BESI TUANG BERBASIS PADA UNSUR NICKEL (Ni) ??

Nickel adalah suatu logam berwarna Putih perak, Mempunyai Berat Jenis 8.5 yang hampir sama dengan Tembaga.

Nickel dijadikan sebagai bagian dari bahan Kawat Las Cast Iron karena Nickel mempunyai karakteristik LOW SOLUBILITY pada Carbon. Dengan menyatunya NICKEL & BESI dapat menghindari terjadinya CRACK (RETAK) PADA DAERAH FUSION LINE akibat adanya perbedaan EXPANSION temperature pengelasan pada material Cast Iron. Selain itu logam las ini mempunyai karakteristik yang lentur dan mudah untuk dimachining.

Perlu diketahui juga TIDAK SELAMANYA kawat las cast iron berbasiskan pada NICKEL tetapi ada juga kawat las yang berbasiskan TEMBAGA (Copper).
DASAR TEORI

1. Preparasi Sampel

1.1 Cutting (Pemotongan)

Pemilihan sampel yang tepat dari suatu benda uji studi mikroskopik merupakan hal yang sangat penting. Pemilihan sampel tersebut didasarkan pada tujuan pengamatan yang hendak dilakukan. Pada umumnya bahan komersil tidak homogen, sehingga satu sampel yang diambil dari suatu volume besar tidak dapat dianggap representatif. Pengambilan sampel harus direncanakan sedemikian sehingga menghasilkan sampel yang sesuai dengan kondisi rata-rata bahan atau kondisi di tempat-tempat tertentu (kritis), dengan memperhatikan kemudahan pemotongan pula. Secara garis besar, pengambilan sampel dilakukan pada daerah yang akan diamati mikrostruktur maupun makrostrukturnya. Sebagai contoh, untuk pengamatan mikrostruktur material yang mengalami kegagalan, maka sampel diambil sedekat mungkin pada daerah kegagalan (pada daerah kritis dengan kondisi terparah), untuk kemudian dibandingkan dengan sampel yang diambil dari daerah yang jauh dari daerah gagal. Perlu diperhatikan juga bahwa dalam proses memotong, harus dicegah kemungkinan deformasi dan panas yang berlebihan. Oleh karena itu, setiap proses pemotongan harus diberi pendinginan yang memadai.

Ada beberapa sistem pemotongan sampel berdasarkan media pemotong yang digunakan, yaitu meliputi proses pematahan, pengguntingan, penggergajian, pemotongan abrasi (abrasive cutter), gergaji kawat, dan EDM (Electric Discharge Machining). Berdasarkan tingkat deformasi yang dihasilkan, teknik pemotongan terbagi menjadi dua, yaitu :

* Teknik pemotongan dengan deformasi yang besar, menggunakan gerinda

* Teknik pemotongan dengan deformasi kecil, menggunakan low speed diamond saw

1.2 Mounting

Spesimen yang berukuran kecil atau memiliki bentuk yang tidak beraturan akan sulit untuk ditangani khususnya ketika dilakukan pengamplasan dan pemolesan akhir. Sebagai contoh adalah spesimen yang berupa kawat, spesimen lembaran metal tipis, potongan yang tipis, dll. Untuk memudahkan penanganannya, maka spesimen-spesimen tersebut harus ditempatkan pada suatu media (media mounting). Secara umum syarat-syarat yang harus dimiliki bahan mounting adalah :

* Bersifat inert (tidak bereaksi dengan material maupun zat etsa)

* Sifat eksoterimis rendah

* Viskositas rendah

* Penyusutan linier rendah

* Sifat adhesi baik

* Memiliki kekerasan yang sama dengan sampel

* Flowabilitas baik, dapat menembus pori, celah dan bentuk ketidakteraturan yang terdapat pada sampel

* Khusus untuk etsa elektrolitik dan pengujian SEM, bahan mounting harus kondusif

Media mounting yang dipilih haruslah sesuai dengan material dan jenis reagen etsa yang akan digunakan. Pada umumnya mounting menggunakan material plastik sintetik. Materialnya dapat berupa resin (castable resin) yang dicampur dengan hardener, atau bakelit. Penggunaan castable resin lebih mudah dan alat yang digunakan lebih sederhana dibandingkan bakelit, karena tidak diperlukan aplikasi panas dan tekanan. Namun bahan castable resin ini tidak memiliki sifat mekanis yang baik (lunak) sehingga kurang cocok untuk material-material yang keras. Teknik mounting yang paling baik adalah menggunakan thermosetting resin dengan menggunakan material bakelit. Material ini berupa bubuk yang tersedia dengan warna yang beragam. Thermosetting mounting membutuhkan alat khusus, karena dibutuhkan aplikasi tekanan (4200 lb/in2) dan panas (1490C) pada mold saat mounting.

1.3 Grinding (Pengamplasan)

Sampel yang baru saja dipotong, atau sampel yang telah terkorosi memiliki permukaan yang kasar. Permukaan yang kasar ini harus diratakan agar pengamatan struktur mudah untuk dilakukan. Pengamplasan dilakukan dengan menggunakan kertas amplas yang ukuran butir abrasifnya dinyatakan dengan mesh. Urutan pengamplasan harus dilakukan dari nomor mesh yang rendah (hingga 150 mesh) ke nomor mesh yang tinggi (180 hingga 600 mesh). Ukuran grit pertama yang dipakai tergantung pada kekasaran permukaan dan kedalaman kerusakan yang ditimbulkan oleh pemotongan.

Hal yang harus diperhatikan pada saat pengamplasan adalah pemberian air. Air berfungsi sebagai pemidah geram, memperkecil kerusakan akibat panas yang timbul yang dapat merubah struktur mikro sampel dan memperpanjang masa pemakaian kertas amplas. Hal lain yang harus diperhatikan adalah ketika melakukan perubahan arah pengamplasan, maka arah yang baru adalah 450 atau 900 terhadap arah sebelumnya.

1.4 Polishing (Pemolesan)

Setelah diamplas sampai halus (600#), sampel harus dilakukan pemolesan. Pemolesan bertujuan untuk memperoleh permukaan sampel yang halus bebas goresan dan mengkilap seperti cermin dan menghilangkan ketidakteraturan sampel hingga orde 0.01 μm. Permukaan sampel yang akan diamati di bawah mikroskop harus benar-benar rata. Apabila permukaan sampel kasar atau bergelombang, maka pengamatan struktur mikro akan sulit untuk dilakukan karena cahaya yang datang dari mikroskop dipantulkan secara acak oleh permukaan sampel.

Tahap pemolesan dimulai dengan pemolesan kasar terlebih dahulu kemudian dilanjutkan dengan pemolesan halus. Ada 3 metode pemolesan antara lain yaitu sebagai berikut :

a. Pemolesan Elektrolit Kimia

Hubungan rapat arus & tegangan bervariasi untuk larutan elektrolit dan material yang berbeda dimana untuk tegangan, terbentuk lapisan tipis pada permukaan, dan hampir tidak ada arus yang lewat, maka terjadi proses etsa. Sedangkan pada tegangan tinggi terjadi proses pemolesan.

b. Pemolesan Kimia Mekanis

Merupakan kombinasi antara etsa kimia dan pemolesan mekanis yang dilakukan serentak di atas piringan halus. Partikel pemoles abrasif dicampur dengan larutan pengetsa yang umum digunakan.

c. Pemolesan Elektro Mekanis (Metode Reinacher)

Merupakan kombinasi antara pemolesan elektrolit dan mekanis pada piring pemoles. Metode ini sangat baik untuk logam mulia, tembaga, kuningan, dan perunggu.

1.5 Etching (Etsa)

Etsa merupakan proses penyerangan atau pengikisan batas butir secara selektif dan terkendali dengan pencelupan ke dalam larutan pengetsa baik menggunakan listrik maupun tidak ke permukaan sampel sehingga detil struktur yang akan diamati akan terlihat dengan jelas dan tajam. Untuk beberapa material, mikrostruktur baru muncul jika diberikan zat etsa. Sehingga perlu pengetahuan yang tepat untuk memilih zat etsa yang tepat.

a. Etsa Kimia

Merupakan proses pengetsaan dengan menggunakan larutan kimia dimana zat etsa yang digunakan ini memiliki karakteristik tersendiri sehingga pemilihannya disesuaikan dengan sampel yang akan diamati. Contohnya antara lain : nitrid acid / nital (asam nitrit + alkohol 95%), picral (asam picric + alkohol), ferric chloride, hydroflouric acid, dll. Perlu diingat bahwa waktu etsa jangan terlalu lam (umumnya sekitar 4 – 30 detik), dan setelah dietsa, segera dicuci dengan air mengalir lalu dengan alkohol kemudian dikeringkan dengan alat pengering.

b. Elektro Etsa (Etsa Elektrolitik)

Merupakan proses etsa dengan menggunakan reaksi elektoetsa. Cara ini dilakukan dengan pengaturan tegangan dan kuat arus listrik serta waktu pengetsaan. Etsa jenis ini biasanya khusus untuk stainless steel karena dengan etsa kimia susah untuk medapatkan detil strukturnya

2. Pengamatan Struktur Makro dan Mikro

Pengamatan metalografi dengan mikroskop dapat dibagi dua, yaitu :

1. Metalografi makro, yaitu pengamatan struktur pembesaran 10 – 100 kali
2. Metalografi mikro, yaitu pengamatan struktur pembesaran di atas 100 kali

Mode perpatahan material secara umum dapat dibagi dua, yaitu perpatahan ulet yang berkarakter berserabut (fibrous) dan gelap (dull), dan perpatahan getas dimana permukaan patahan berbutir (granular) dan terang. Selanjutnya pengamatan dapat dilakukan dengan stereoscope macroscope dan SEM. Sedangkan untuk daerah hasil lasan, secara metalografi dapat ditunjukkan adanya empat bagian, yaitu : composite zone, unmixed zone, partially melted zone, dan true heat affected zone.

Mikrostruktur

* Baja karbon, merupakan material ferrous dengan < 2.14% C. Terbagi atas 2 jenis, yaitu baja hypoeutectoid (< 0.8%C) dan hypereutectoid (> 0.8%C). Pada kadar 0.8%C terbentuk fasa perlit (cementit 6.67%C + ferit 0.02%C)

* Besi tuang, yaitu material ferrous dengan kadar karbon 2.14% - 6.67% . Besi tuang komersial 2.5 – 4%C, karena kadar C yang terlalu tinggi membuat besi tuang rapuh. Secara metalografi besi tuang dibagi menjadi 4 tipe berdasarkan kadar karbon, impurities, paduan, serta proses perlakuan panas, yaitu : besi tuang putih, besi tuang malleable, besi tuang kelabu, dan besi tuang nodular.

* Baja karbon pada heat & surface treatment, dimana dasarnya adalah transformasi fasa dan dekomposisi austenite. Proses perlakuan panas antara lain annealing, spheroidisasi, normalisasi, tempering & quenching. Dasarnya adalah diagram TTT dan CCT, dimana perlakuan panas ini akan menyebabkan pembentukan fasa martensit dan bainite.

* Baja perkakas, adalah baja dengan kualitas tinggi yang digunakan sebagai perkakas.Tingginya kualitas baja perkakas diperoleh melalui penambahan paduan Cr, W, dan Mo, dan perlakuan khusus. Umumnya mikrostrukturnya berupa matriks martensite dengan partikel karbida, grafit dan presipitat.

* Aluminium alloys, terdiri atas kristal utama padatan aluminium (dendritik) ditambah produk hasil reaksi dengan paduan.

* Copper alloys, umumnya dengan elemen dasar seng. Contohnya adalah kuningan (paduan tembaga seng dengan timbal, timah dan aluminium)

Metode perhitungan besar butir

Ada tiga metode yang direkomendasikan ASTM, yaitu :

* Metode Perbandingan

Foto mikrostruktur bahan dengan perbesaran 100x dapat dibandingkan dengan grafik ASTM E112-63, dapat ditentukan besar butir. Nomor besar butir ditentukan dengan rumus :

N–2n-1

Dimana N adalah jumlah butir per inch2 dengan perbesaran 100x. Metode ini cocok untuk sampel dengan butir beraturan.

* Metode Intercept (Heyne)

Plastik transparan dengan grid (bergaris kotak-kotak) diletakkan di atas foto atau sampel. Kemudian dihitung semua butir yang berpotongan pada akhir garis dianggap setengah. Perhitungan dilakukan pada tiga daerah agar mewakili. Nilai diameter rata-rata ditentukan dengan membagi jumlah butir yang berpotongan dengan panjang garis. Metode ini cocok untuk butir yang tidak beraturan.

* Metode Planimetri (Jeffries)

Metode ini menggunakan lingkaran yang umumnya memiliki 5000 mm2. perbesaran dipilih sedemikian sehingga ada sedikitnya 75 butir yang berada di dalam lingkaran. Kemudian hitung jumlah total semua butir dalam lingkaran ditambah setengah dari jumlah butir yang berpotongan dengan lingkaran. Besar butir dihitung dengan mengalikan jumlah butir dengan pengali Jeffries (f). Perlu diperhatikan bahwa ketiga mode di atas hanya merupakan besar butir pendekatan, sebab butir memiliki 3 dimensi bukan dua dimensi.

3. Percobaan Jominy

Proses kombinasi pemanasan dan pendinginan yang bertujuan mengubah struktur mikro dan sifat mekanis logam disebut perlakuan panas (heat treatment). Logam yang didinginkan dengan kecepatan dan media pendingin berbeda memberikan perubahan struktur mikro yang berbeda pula. Setiap struktur mikro yang terbentuk (martensit, bainit, ferit dan perlit) merupakan hasil transformasi fasa austenit. Tiap fasa tersebut terbentuk pada kondisi pendinginan yang berbeda-beda sebagaimana yang dapat dilihat pada diagram CCT dan TTT. Tiap fasa memiliki nilai kekerasan yang berbeda-beda. Dengan pengujian Jominy (jominy test) dapat dibuktikan bahwa laju pendinginan yang berbeda-beda akan menghasilkan kekerasan bahan yang berbeda. Pada percobaan ini, sampel dipanaskan hingga suhu austenit, selanjutnya didinginkan secara merata, lalu dihitung nilai kekerasannya. Nilai kekerasan berbanding lurus dengan jarak dari tempat berakhirnya quenced. Makin lambat laju pendinginan logam, makin banyak matriks perlit yang ditampilkan dan kekerasan makin turun.

Jumat, 04 April 2008

Sand Casting

Material cetakan yang digunakan pada praktikum kali ini adalah material pasir silica. Dengan penambahan penguat seperti clay, bentonite dan penghalus permukaan serbuk arang. Pada praktikum ini terdapat eberapa jenis pasir yang digunakan, antara lain :

1. Pasir muka (facing sand)

Pasir muka merupakan pasir utama yang bersentuhan langsung dengan pola dan digunakan untuk menutupi pola benda pada pembuatan cetakan baik dibagian kup maupun drag. Pasir muka yang digunakan harus memiliki kualitas baik sehingga dalam pembuatannya komposisinya perlu diperhitungkan dengan teliti. Hal ini diperlukan karena pasir muka ini akan langsung bersentuhan dengan logam cair dan akan menentukan bentuk dan dimensi dari benda cor serta memberikan sifat kehalusan permukaan pada benda hasil cor. Dalam pasir tersebut masih mengandung unsur lain sebagai penguat dan penghalus permukaan material.

a. Bentonit merupakan bahan pengikat yang umum digunakan dalam pasir cetak basah. Bentonit adalah istilah yang digunakan untuk sejenis lempung yang memiliki sifat menyerap air lebih besar dibandingkan dengan jenis tanah liat lainnya. Pada percobaan ini digunakan 9% bentonit agar permeabilitasnya besar dan tetap memiliki sedikit kekuatan tekan sehingga mampu untuk menopang benda cor serta memiliki sifat collapsibility yang baik.

b. Gula tetes (molases) ditambahkan untuk meningkatkan waktu efektif pasir (bench life) dan memberikan kekuatan kering yang tinggi. Karena kekentalan yang tinggi dan wettability yang baik maka akan menghasilkan kekuatan basah yang baik pula. Pada temperatur tinggi, gula tetes akan terurai menjadi CO2 yang akan meningkatkan kekerasan dan kekuatan tekan akibat panas cetakan. Pada percobaan ini digunakan gula tetes (molases) 2% pada pasir muka.

c. Bahan berserat yang digunakan dalam praktikum kali ini adalah serbuk arang. Berdasarkan literatur[1], penggunaan serbuk arang 1% pada praktikum ini sesuai dengan literatur yang ada dan sesuai dengan kebutuhan karena menghasilkan cetakan permukaannya halus dan mudah dalam pembongkarannya.

2. Pasir pendukung (back sand)

Pasir pendukung (backsand) merupakan pasir yang tidak bersentuhan langsung dengan pola. Pasir pendukung yang digunakan memiliki kualitas yang lebih rendah dibandingkan pasir muka, karena pasir yang digunakan untuk back sand merupakan pasir yang sudah terpakai atau berasal dari pasir bekas proses pengecoran sebelumnya. Material pasir yang kami gunakan untuk back sand telah mengalami kehilangan kadar air akibat proses penguapan oleh panas dan udara karena tempat penyimpanan pasirnya langsung berhubungan dengan udara

3. Pasir reparasi (back sand)

Pasir reparasi merupakan pasir yang digunakan untuk memperbaiki permukaan cetakan yang rusak atau rontok pada saat pengangkatan pola. Pasir reparasi yang digunakan pasir memiliki kadar gula yang lebih tinggi dari pasir muka. Umumnya bahan pelapis yang digunakan harus memiliki temperatur lebur yang lebih tinggi daripada pasir dan dapat membentuk penghalang yang tidak tembus oleh logam cair.

Pada praktikum ini dilakukan coating pada bagian dari cetakan pasir yang ambruk. Hal ini sesuai dengan aplikasi dari coating, karena coating berfungsi untuk memperhalus permukaan tetapi dia juga berfungsi sebagai pembentuk lapisan penghalang yang anti tembus oleh logam cair, sehingga cacat-cacat yang umumnya diakibatkan antara persentuhan antara logam cair dan cetakan dapat diminimalisir.


Desember 10, 2007
Proses Peleburan Alumunium
Posted by cepiar under Uncategorized (edit this)
No Comments


Pada proses peleburan digunakan dapur krusibel. Material yang digunakan adalah scrap Al hasil penelitian mahasiswa. Hal yang pertama kali dilakukan adalah proses persiapan dapur. Dimulai dari pembersihan tungku lebur dan melapisi dengan coating hingga penempatan briket batubara dalam tungku besar.

Selama proses peleburan, material Al yang digunakan dilakukan proses pre-heating. Hal ini bertujuan untuk menghilangkan moisture pada permukaan material untuk menghindari pembentukan gas dan melarut dalam logam cair yang dapat menyebabkan cacat gas. Setelah proses pre-heating maka material logam dimasukkan kedalam tungku dan dibiarkan melebur. Selama peleburan briket batubara terus ditambahkan untuk menjaga kestabilan suplai kalor untuk melebur logam.

i. Alloying

Pada proses pengecoran dimana selain bertujuan menghasilkan produk yang sesuai dengan dimensi juga dibutuhkan nilai sifat mekanis material yang sesuai. Pemberian material tambahan (alloying) bertujuan untuk meningkatkan harga sifat mekanis dari material. Untuk material Al pemberian alloying menggunakan material Cu, Zn, Mg, P, Si, Sr, dan Na.

Pada praktikum ini penguatan alloying tidak dilakukan. Jika dilakukan dan kemudian sampel dilakukan pengujian (tarik, keras) maka dihasilkan nilai yang lebih besar dibanding tanpa alloying.

ii. Degassing

Pada temperatur tinggi gas hidrogen akan cenderung berdifusi kedalam logam cair. Gas-gas hidrogen ini harus dikeluarkan dari Aluminium cair karena akan menyebabkan terjadinya cacat pada benda cor. Proses pengeluaran gas ini disebut proses degasser. Umumnya degasser yang digunakan adalah dalam bentuk tablet atau gas (gas argon dan gas nitrogen). Mekanisme pengeluaran gas pada logam Aluminium cair adalah sebagai berikut :

Tablet yang dimasukkan ke dalam Aluminium cair akan menghasilkan gas dalam bentuk gelembung yang hampir hampa udara (< 1 atm). Gas hidrogen yang terlarut dalam Aluminium tidak dapat keluar karena tekanan didalam Aluminium cair << 1 atm sedangkan tekanan diluar sebesar 1 atm. Akibatnya gelembung udara yang dihasilkan tablet masuk ke dalam gas hidrogen dan gelembung udara tersebut terbawa keatas bersaman dengan kotoran lain yang terlarut didalam Aluminium cair. Gas-gas atau gelembung udara tersebut sebagian akan menjadi dross dan akan dibuang melalui proses pembuangan dross. Pada praktikum ini degasser tidak digunakan.

iii. Cover Flux

Setelah proses degasser selesai dilanjutkan dengan proses pemberian flux. Proses pemberian flux bertujuan untuk menutupi atau covering permukaan logam Aluminium cair agar terhindar dari masuknya gas hidrogen kedalam logam aluminium. Pemberian flux dilakukan pada saat mulai pencairan aluiminium dengan cara menaburkan flux pada permukaan Aluminium cair. Covering flux berfungsi untuk covering permukaan logam cair agar terhindar dari masuknya gas hidrogen . Pemberian flux jenis ini dilakukan tanpa pengadukan. Pada saat praktikum digunakan flux covering.